Publications

Below is a list of my publications in reversed chronological order, with links to all the relevant resources such as arXiv, GitHub, slides, etc. An always up-to-date list of my papers is available on Google Scholar.

2024

  1. NeurIPS
    tgb2.png
    TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
    Julia Gastinger, Shenyang Huang, Mikhail Galkin, and 9 more authors
    Advances in Neural Information Processing Systems, 2024
  2. ACM
    multimodal.png
    Do We Really Need to Drop Items with Missing Modalities in Multimodal Recommendation?
    Daniele Malitesta, Emanuele Rossi, Claudio Pomo, and 2 more authors
    Proceedings of the 33rd ACM International Conference on Information, 2024
  3. arXiv
    bayesian.png
    Bayesian Binary Search
    Vikash Singh, Matthew Khanzadeh, Vincent Davis, and 4 more authors
    arXiv preprint, 2024
  4. bioRxiv
    pinder.png
    PINDER: The Protein Interaction Dataset and Evaluation Resource
    Daniel Kovtun, Mehmet Akdel, Alexander Goncearenco, and 16 more authors
    bioRxiv, 2024
  5. bioRxiv
    plinder.png
    PLINDER: The Protein-Ligand Interactions Dataset and Evaluation Resource
    Janani Durairaj, Yusuf Adeshina, Zhonglin Cao, and 20 more authors
    ICML ML for Life and Material Science Workshop, 2024
  6. arXiv
    utg.png
    UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs
    Shenyang Huang, Farimah Poursafaei, Reihaneh Rabbany, and 2 more authors
    arXiv, 2024
  7. arXiv
    lightning.png
    Channel Balance Interpolation in the Lightning Network via Machine Learning
    Vincent, Emanuele Rossi, and Vikash Singh
    arXiv, 2024

2023

  1. NeurIPS
    tgb.png
    Temporal Graph Benchmark for Machine Learning on Temporal Graphs
    Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, and 7 more authors
    Advances in Neural Information Processing Systems, 2023
  2. arXiv
    dir-gnn.png
    Edge Directionality Improves Learning on Heterophilic Graphs
    Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, and 3 more authors
    Learning on Graphs Conference (LoG), 2023

2022

  1. ICLR
    lp.png
    Graph Neural Networks for Link Prediction with Subgraph Sketching
    Ben Chamberlain, Sergey Shirobokov, Emanuele Rossi, and 5 more authors
    International Conference on Learning Representations (ICLR), 2022
  2. AAAI
    causal_rl.png
    Provably Efficient Causal Model-Based Reinforcement Learning for Systematic Generalization
    Mirco Mutti, Riccardo De Santi, Emanuele Rossi, and 3 more authors
    Proceedings of the AAAI Conference on Artificial Intelligence, 2022
  3. ICML
    network_games.webp
    Learning to Infer Structures of Network Games
    Emanuele Rossi, Federico Monti, Yan Leng, and 2 more authors
    Proceedings of the 39th International Conference on Machine Learning, ICML, 2022
  4. LoG
    fp.png
    On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features
    Emanuele Rossi, Henry Kenlay, Maria I. Gorinova, and 3 more authors
    Learning on Graphs Conference (LoG), 2022

2021

  1. ICML
    grand.png
    GRAND: Graph Neural Diffusion
    Ben Chamberlain, James Rowbottom, Maria I. Gorinova, and 3 more authors
    Proceedings of the 38th International Conference on Machine Learning, ICML, 2021

2020

  1. RecSys
    word2vec.png
    Tuning Word2vec for Large Scale Recommendation Systems
    Ben Chamberlain, Emanuele Rossi, Dan Shiebler, and 2 more authors
    RecSys - 14th ACM Conference on Recommender Systems, 2020
  2. ICML
    tgn.png
    Temporal Graph Networks for Deep Learning on Dynamic Graphs
    Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, and 3 more authors
    ICML Workshop on Graph Representation Learning, 2020
  3. ICML
    sign.png
    SIGN: Scalable Inception Graph Neural Networks
    Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, and 3 more authors
    ICML Workshop on Graph Representation Learning, 2020

2019

  1. KDD
    rna.png
    ncRNA Classification with Graph Convolutional Networks
    Emanuele Rossi, Federico Monti, Michael Bronstein, and 1 more author
    KDD Workshop on Deep Learning on Graphs, 2019