TGN: Temporal Graph
Networks for Dynamic
Graphs

Emanuele Rossi, Twitter

In collaboration with Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti
and Michael Bronstein

Background

Graph Neural Networks are a Hot Topic in
ML!

deep learning

.. gan

optimization

neural network

generative models

unsupervised learning
reinforcement learnin
convolutional neural networ

recurrent neural network

machine learning
multitask learnin
neural architecture searc

representation learning

adversarial robustness

~ robustness

selfsupervised learmrig

nip

transformer

bert

graph neural network

-4 -3 -2 -1 0 1 2
A between 2020 and 2019 in %

ICLR 2020 submissions keyword statistics

Plot: Pau Rodriguez Lépez

Graphs are everywhere

W Functional Networks

Social Networks

Molecules

Interaction
Networks

From Images to Graphs

e Constant number of neighbors e Different number of neighbors
e Fixed ordering of neighbors e No ordering of neighbors

Graph Neural Networks

Gilmer et al. 2017

Problem: Many Graphs are Dynamic

Hi

Dynamic Graphs

- Discrete-time dynamic graphs: sequence of snapshots
- Continuous-time dynamic graphs: sequence of timed-events

Discrete-time dynamic graphs

-

O

O O
O

O

~

k Continuous-time dynamic graphs /

Learning on Dynamic Graphs

1 <ty <t3 <ty <t5 <tg <ty

- Datais a sequence of ordered timed events (eg.

edge addition) 1 —t; (2
- An epoch goes through the events in chronological

order . . . o 2 _t2_)<’3\}
- Model is trained self-supervised, predicting future - —

edges using all information from previous edges _{" 4 "’;_t?)_)@

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1wtiqdBJYkCkNX_MGPycXvez1ytBCATE8

Model

TGN: Temporal Graph Networks

- Model for dynamic graphs is an encoder-decoder pair

- TGN is an encoder model which is able to generate temporal node embeddings z;(t) = f(i,)
for any node i and time t. Decoder is task-dependent, eg. MLP from two node embeddings

to edge probability
- General theoretical framework, which consists of 5 different modules

- Generalizes existing models such as Jodie[1] and TGAT[2]

1 71 e
AN ;
I ty 3
te tg = (tS) Decoder
— 3 TGN —> p((2,4)[ts)
(MLP)
w7 N\ b z4(ts)

[1]Kumar et al. 2019, [2]Xu et al. 2019

https://app.diagrams.net/?page-id=1537u-hYUmsisSEVlVmX&scale=auto#G1A5BRYas7jtvKrMbzdiMBzAPTgBexpykc

Modules: Memory

- State (vector) for each node the model has seen so far

- Compressed representation of all past interactions of a node
- Analogous to RNN hidden state, for one for each node

- Not a parameter — updated also at test time

- Initialized at 0, it can handle new nodes (inductive)

(T -\

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Message Function

- Given an interaction (i,5), computes messages for the source and the destination
- Maessages will be used to update the memory

m; (t) = msg (s;(t"), Sj (t7),t, €ij (1),
m;(t) = msg(s;(t),si(t),t, ei;(t))

Messages

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Memory Updater

- Updates memory using new messages

s;(t) = mem (m;(t),s;(t7))

(—

1(t1

2 (1

to

——1mem—>

(t1)
(t1)
(t2) |
3(152)’

Messages

—

s1(t1

ty

4(t2

(t1)
(t1)
(t2)
(t2)

wt)]

 —

(Updated)
Memory

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: (Graph) Embedding

- Computes the temporal embedding of a node (which can be then
used for prediction) using the graph
- Solves the staleness problem (memory becoming out of date)

s1(to) z;(t) = emb(i,t) = h(si(t),s;(t),eij, vi(t),v;(t)),
s2(to) j = T i
(to)

s4(to . e K
Temporal neighborhood YN
S3 (t(j) P & 2) 4) 5
NE—
" 612 (t2) 614&4)\
lemory %
Z1 (tl) z9 (tl)

= emb
(4) { z4(t2) z3(t2)

S1
Node Embeddings

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3
https://app.diagrams.net/?page-id=okLoJMft42n3U-MHGWuY&scale=auto#G1W-sjrsrsJURJb0Ld7tWUwU9RGfKxofMx

TGN: Overview

@ z1(t) z2(t1) ? p((1,2)[t1) E?s
emb z4(t2) z3(t2) N p((4,3)[t2)

g de Embeddii Edge
- ode Embeddings Probabilities
t,>(3) - N - .
@ my (tl) S1 (t 1)
Batch ~ @
mSg\ mo (tl) S9 (tl)
_)

my (t2) — 84 (t2)
) sa(t2)
Messages (Updated)

Memory

https://app.diagrams.net/?page-id=2Y3d6UWpIIbQFhJPVadd&scale=auto#G1tKDLLumBFkUCGden-Ah7AN4Mp1jcOJut

Learning TGN

- Problem: Given a batch, interaction serves both as our training
target and as information to update the memory

- If we first update the memory (with the ground truth interactions),
and then predict the same interactions, the memory would
contain information about what we want to predict

- However, predicting before updating the memory causes all
memory-related modules not to receive a gradient

- Solution: Update memory first, but using interactions from
previous batch

Learnlng TGN Dlagram

rmy (t1) @ T my (ty) @ s1(t1)
rms (t2) | g | ™2 () || N s2(t2)
| rms (t3) | | ms (tg) ‘ l S3 (tg) |
\| rmy(ty) |/ d my(ty) ’/ Q s4(ta) ‘/
Raw gt’frsesag e (Old) Messages (%@Cﬁé‘ig)
1 —ts>(2 emb 21 (ts) z2(t5) SD p((1,2)[ts) @/
() —t:>(3) 21 (t3) 2(ts) | (. 3)1t) >
Batch Node Embebbings Edge

Probabilities

https://app.diagrams.net/?page-id=lECZMzjrmla3wtnrequV&scale=auto#G1myyHlMEHDBtqLWizvZFlwT7z-gJX17cr

Scalability

Memory is not a parameter and we can just think of it
as an additional feature vector for each node which we
change over time

Only memory for nodes involved in a batch is in GPU
memory at any time

Model is as scalable as GraphSage — Can scale to very
large graphs (even if we don’t show this in the paper)

Experiments

Experiments: Future Edge Prediction

Wikipedia Reddit Twitter
Transductive Inductive Transductive Inductive Transductive Inductive
GAE* 91.44 4+ 0.1 f 93.23 + 0.3 f - f
VAGE* 91.34 + 0.3 f 92.92 + 0.2 t — t
DeepWalk* 90.71 + 0.6 f 83.10+ 0.5 f — t
Node2Vec* 91.48 4+ 0.3 f 84.58 + 0.5 f - f
GAT* 94.73+0.2 91.27+04 97.33+0.2 9537+0.3 67.57+04 62.32+05
GraphSAGE* 93.56 £0.3 91.09+0.3 97.65+0.2 96.27+0.2 65.794+0.6 60.13+0.6
CTDNE 92.17+ 0.5 f 91.41+0.3 f — f
JODIE 94.33+0.4 91.29+0.5 96.36+0.5 94.62+0.5 62.05+1.0 52.72+1.6
TGAT 95.344+0.1 9399+0.3 98.12+0.2 96.62+0.3 67.84+0.6 62.21+0.6
TGN-attn 98.64 +0.1 98.05+0.1 9880+0.1 97.71+0.1 93.66+13 90.16+2.4

Experiments: Dynamic Node Classification

Wikipedia Reddit
GAE*® 74.85 £0.6 58.39+0.5
VAGE* 73.67 £0.8 57.98+0.6
GAT* 82.34 £0.8 64.521+0.5
GraphSAGE* 82.42+0.7 61.24 +0.6
CTDNE 75.89 £0.5 959.43+0.6
JODIE 87.17 0.5 959.50+ 2.1
TGAT 83.69 £ 0.7 65.56 = 0.7
TGN-attn 88.56 0.3 68.63 0.7

[J
A o t | o n St U g Mem. Mem. Update Embedding Mess. Agg. Mess. Func.

JODIE node RNN time —f id
TGAT — — attn (21, 20n)* — -
TGN-attn node GRU attn (11, 10n) last id
TGN-21 node GRU attn (21, 10n) last id
TGN-no-mem — — attn (11, 10n) — id
TGN-time node GRU time last id
TGN-id node GRU id last id
TGN-sum node GRU sum (11, 10n) last id
- Faster and more accurate than other approaches TGN-mean node GRU attn (11, 10n) mean id
- Memory (TGN-att vs TGN-n-mem) leads to a vast i
i [~ TGN-att ~ —
improvement in performance 58 o Al TaN2l TGN Tras i
- Embedding module is also extremely important TGN-id
(TGN-attn vs TGN-id) and graph attention performs ¢ °° ' TGN-time TGAT
best B, | TErmen & Jodie I
()
- Last message aggregator, while discarding some > 53 i
information, performs extremely well while being very o
fast (TGN-attn vs TGN-mean) % o4 i
<
- Usmg_the memory makes it enough to have 1 graph 2 88 - |
attention layer F
86 - ¥
TGAT-1I
84 T T T T T f i

0 20 40 60 80 100 120 140 160 700 725 750
Time (per epoch) in seconds

Future Work

- Benchmark datasets for dynamic graphs (see OGB)
- Global (graph-wise) memory

- Investigate scalability and propose methods which scale better
(possibly combining with literature on graph sampling, but not trivial)

- Applications: anomaly detection, molecular pathways, financial
transactions, and more?

https://ogb.stanford.edu/docs/team/

Conclusion

- Dynamics graphs are very common, but have received
little attention so far

- We propose TGN, which generalizes existing models and
achieves SOTA results on a variety of benchmarks

- We design an efficient algorithm for training the
memory-related modules

- The ablation study shows the importance of the different
modules

Questions?

