
TGN: Temporal Graph
Networks for Dynamic

Graphs
Emanuele Rossi, Twitter

In collaboration with Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti
and Michael Bronstein

Background

Plot: Pau Rodríguez López

ICLR 2020 submissions keyword statistics

Graph Neural Networks are a Hot Topic in
ML!

Graphs are everywhere

Social Networks

Molecules

Functional Networks

Interaction
Networks

From Images to Graphs

● Constant number of neighbors

● Fixed ordering of neighbors

● Different number of neighbors

● No ordering of neighbors

Graph Neural Networks

Gilmer et al. 2017

i

j

Problem: Many Graphs are Dynamic

Dynamic Graphs
- Discrete-time dynamic graphs: sequence of snapshots
- Continuous-time dynamic graphs: sequence of timed-events

Discrete-time dynamic graphs Continuous-time dynamic graphs

Learning on Dynamic Graphs

- Data is a sequence of ordered timed events (eg.
edge addition)

- An epoch goes through the events in chronological
order

- Model is trained self-supervised, predicting future
edges using all information from previous edges

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1wtiqdBJYkCkNX_MGPycXvez1ytBCATE8

Model

TGN: Temporal Graph Networks
- Model for dynamic graphs is an encoder-decoder pair

- TGN is an encoder model which is able to generate temporal node embeddings
for any node i and time t. Decoder is task-dependent, eg. MLP from two node embeddings
to edge probability

- General theoretical framework, which consists of 5 different modules

- Generalizes existing models such as Jodie[1] and TGAT[2]

[1]Kumar et al. 2019, [2]Xu et al. 2019

https://app.diagrams.net/?page-id=1537u-hYUmsisSEVlVmX&scale=auto#G1A5BRYas7jtvKrMbzdiMBzAPTgBexpykc

Modules: Memory
- State (vector) for each node the model has seen so far
- Compressed representation of all past interactions of a node
- Analogous to RNN hidden state, for one for each node
- Not a parameter → updated also at test time
- Initialized at 0, it can handle new nodes (inductive)

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Message Function
- Given an interaction , computes messages for the source and the destination
- Messages will be used to update the memory

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Memory Updater
- Updates memory using new messages

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: (Graph) Embedding
- Computes the temporal embedding of a node (which can be then

used for prediction) using the graph
- Solves the staleness problem (memory becoming out of date)

Temporal neighborhood

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3
https://app.diagrams.net/?page-id=okLoJMft42n3U-MHGWuY&scale=auto#G1W-sjrsrsJURJb0Ld7tWUwU9RGfKxofMx

TGN: Overview

https://app.diagrams.net/?page-id=2Y3d6UWpIIbQFhJPVadd&scale=auto#G1tKDLLumBFkUCGden-Ah7AN4Mp1jcOJut

Learning TGN
- Problem: Given a batch, interaction serves both as our training

target and as information to update the memory

- If we first update the memory (with the ground truth interactions),
and then predict the same interactions, the memory would
contain information about what we want to predict

- However, predicting before updating the memory causes all
memory-related modules not to receive a gradient

- Solution: Update memory first, but using interactions from
previous batch

Learning TGN - Diagram

https://app.diagrams.net/?page-id=lECZMzjrmla3wtnrequV&scale=auto#G1myyHlMEHDBtqLWizvZFlwT7z-gJX17cr

Scalability
- Memory is not a parameter and we can just think of it

as an additional feature vector for each node which we
change over time

- Only memory for nodes involved in a batch is in GPU
memory at any time

- Model is as scalable as GraphSage → Can scale to very
large graphs (even if we don’t show this in the paper)

Experiments

Experiments: Future Edge Prediction

Experiments: Dynamic Node Classification

Ablation Study
(Future edge prediction)

- Faster and more accurate than other approaches

- Memory (TGN-att vs TGN-n-mem) leads to a vast
improvement in performance

- Embedding module is also extremely important
(TGN-attn vs TGN-id) and graph attention performs
best

- Last message aggregator, while discarding some
information, performs extremely well while being very
fast (TGN-attn vs TGN-mean)

- Using the memory makes it enough to have 1 graph
attention layer

Future Work
- Benchmark datasets for dynamic graphs (see OGB)

- Global (graph-wise) memory

- Investigate scalability and propose methods which scale better
(possibly combining with literature on graph sampling, but not trivial)

- Applications: anomaly detection, molecular pathways, financial
transactions, and more?

https://ogb.stanford.edu/docs/team/

Conclusion
- Dynamics graphs are very common, but have received

little attention so far

- We propose TGN, which generalizes existing models and
achieves SOTA results on a variety of benchmarks

- We design an efficient algorithm for training the
memory-related modules

- The ablation study shows the importance of the different
modules

Questions?

@emaros96

