TGN: Temporal Graph Networks for Dynamic Graphs

Emanuele Rossi, Twitter

In collaboration with Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti and Michael Bronstein

Background

Graph Neural Networks are a Hot Topic in ML!

ICLR 2020 submissions keyword statistics

Plot: Pau Rodríguez López

Graphs are everywhere

Social Networks

Molecules

Functional Networks

Interaction Networks

From Images to Graphs

- Constant number of neighbors
- Fixed ordering of neighbors

- Different number of neighbors
- No ordering of neighbors

Graph Neural Networks

$$egin{aligned} \mathbf{m}_{ij} &= \mathrm{msg}(\mathbf{v}_i, \mathbf{v}_j, \mathbf{e}_{ij}), \ \mathbf{z}_i &= \sum_{j \in \mathcal{N}_i} h(\mathbf{m}_{ij}, \mathbf{v}_i) \end{aligned}$$

Gilmer et al. 2017

Problem: Many Graphs are Dynamic

Dynamic Graphs

- Discrete-time dynamic graphs: sequence of snapshots
- Continuous-time dynamic graphs: sequence of timed-events

Discrete-time dynamic graphs

Learning on Dynamic Graphs

$t_1 \leq t_2 \leq t_3 \leq t_4 \leq t_5 \leq t_6 \leq t_7$

- Data is a **sequence of ordered timed events** (eg. edge addition)
- An epoch goes through the events in chronological order
- Model is **trained self-supervised**, predicting future edges using all information from previous edges

Model

TGN: Temporal Graph Networks

- Model for dynamic graphs is an encoder-decoder pair
- TGN is an encoder model which is able to generate **temporal node embeddings** $z_i(t) = f(i, t)$ for any node *i* and time *t*. Decoder is task-dependent, eg. MLP from two node embeddings to edge probability
- **General theoretical framework**, which consists of **5 different modules**
- Generalizes existing models such as *Jodie*[1] and *TGAT*[2]

[1]Kumar et al. 2019, [2]Xu et al. 2019

Modules: Memory

- State (vector) for each node the model has seen so far
- Compressed representation of all past interactions of a node
- Analogous to RNN hidden state, for one for each node
- Not a parameter → updated also at test time
- Initialized at 0, it can handle new nodes (inductive)

Memory

Modules: Message Function

- **Given an interaction** (*i*, *j*), **computes messages** for the source and the destination
- Messages will be used to update the memory

$$egin{aligned} \mathbf{m}_i(t) &= \mathrm{msg}\left(\mathbf{s}_i(t^-),\mathbf{s}_j(t^-),t,\mathbf{e}_{ij}(t)
ight), \ \mathbf{m}_j(t) &= \mathrm{msg}\left(\mathbf{s}_j(t^-),\mathbf{s}_i(t^-),t,\mathbf{e}_{ij}(t)
ight) \end{aligned}$$

Messages

Modules: Memory Updater

- Updates memory using new messages

 $\mathbf{s}_i(t) = \mathrm{mem}\left(ar{\mathbf{m}}_i(t), \mathbf{s}_i(t^-)
ight)$

Modules: (Graph) Embedding

- Computes the temporal embedding of a node (which can be then used for prediction) using the graph
- Solves the staleness problem (memory becoming out of date)

TGN: Overview

Learning TGN

- **Problem**: Given a batch, interaction serves both as our training target and as information to update the memory
- If we first update the memory (with the ground truth interactions), and then predict the same interactions, the memory would contain information about what we want to predict
- However, predicting before updating the memory causes all memory-related modules not to receive a gradient
- Solution: Update memory first, but using interactions from previous batch

Learning TGN - Diagram

Scalability

- **Memory** is **not a parameter** and we can just think of it as an additional feature vector for each node which we change over time
- Only memory for nodes involved in a batch is in GPU memory at any time
- Model is as scalable as GraphSage → Can scale to very large graphs (even if we don't show this in the paper)

Experiments

Experiments: Future Edge Prediction

	Wikipedia		Reddit		Twitter	
	Transductive	Inductive	Transductive	Inductive	Transductive	Inductive
GAE*	91.44 ± 0.1	†	93.23 ± 0.3	†		†
VAGE*	91.34 ± 0.3	†	92.92 ± 0.2	†	_	†
DeepWalk*	90.71 ± 0.6	†	83.10 ± 0.5	†	_	†
Node2Vec*	91.48 ± 0.3	†	84.58 ± 0.5	†		†
GAT*	94.73 ± 0.2	91.27 ± 0.4	97.33 ± 0.2	95.37 ± 0.3	67.57 ± 0.4	62.32 ± 0.5
GraphSAGE*	93.56 ± 0.3	91.09 ± 0.3	97.65 ± 0.2	96.27 ± 0.2	65.79 ± 0.6	60.13 ± 0.6
CTDNE	92.17 ± 0.5	†	91.41 ± 0.3	<u>†</u>	_	†
JODIE	94.33 ± 0.4	91.29 ± 0.5	96.36 ± 0.5	94.62 ± 0.5	62.05 ± 1.0	52.72 ± 1.6
TGAT	95.34 ± 0.1	93.99 ± 0.3	98.12 ± 0.2	96.62 ± 0.3	67.84 ± 0.6	62.21 ± 0.6
TGN-attn	$\textbf{98.64}\pm0.1$	$\textbf{98.05}\pm0.1$	$\textbf{98.80}\pm0.1$	$\textbf{97.71}\pm0.1$	$\textbf{93.66} \pm 1.3$	$\textbf{90.16} \pm 2.4$

Experiments: Dynamic Node Classification

	Wikipedia	Reddit
GAE*	74.85 ± 0.6	58.39 ± 0.5
VAGE*	73.67 ± 0.8	57.98 ± 0.6
GAT*	82.34 ± 0.8	64.52 ± 0.5
GraphSAGE*	82.42 ± 0.7	61.24 ± 0.6
CTDNE	75.89 ± 0.5	59.43 ± 0.6
JODIE	87.17 ± 0.5	59.50 ± 2.1
TGAT	83.69 ± 0.7	65.56 ± 0.7
TGN-attn	$\textbf{88.56} \pm 0.3$	68.63 ± 0.7

Ablation Study

(Future edge prediction)

- Faster and more accurate than other approaches
- **Memory** (*TGN-att* vs *TGN-n-mem*) leads to a **vast improvement** in performance
- **Embedding** module is also extremely **important** (*TGN-attn* vs *TGN-id*) and **graph attention performs best**
- Last message aggregator, while discarding some information, performs extremely well while being very fast (*TGN-attn* vs *TGN-mean*)
- Using the memory makes it enough to have 1 graph attention layer

	Mem.	Mem. Update	Embedding	Mess. Agg.	Mess. Func.
JODIE	node	RNN	time	†	id
TGAT		—	attn (21, 20n)*		—
TGN-attn	node	GRU	attn (11, 10n)	last	id
TGN-21	node	GRU	attn (21, 10n)	last	id
TGN-no-mem	_	_	attn (11, 10n)	_	id
TGN-time	node	GRU	time	last	id
TGN-id	node	GRU	id	last	id
TGN-sum	node	GRU	sum (11, 10n)	last	id
TGN-mean	node	GRU	attn (11, 10n)	mean	id

Future Work

- Benchmark datasets for dynamic graphs (see OGB)
- Global (graph-wise) memory
- Investigate scalability and propose methods which scale better (possibly combining with literature on graph sampling, but not trivial)
- **Applications**: anomaly detection, molecular pathways, financial transactions, and more?

Conclusion

- Dynamics graphs are very common, but have received little attention so far
- We propose **TGN**, which **generalizes existing models** and achieves **SOTA results** on a variety of benchmarks
- We design an **efficient algorithm for training** the memory-related modules
- The ablation study shows the importance of the different modules

Questions?

