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Background



Graph Neural Networks are a Hot Topic in
ML!
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Graphs are everywhere
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From Images to Graphs

e Constant number of neighbors e Different number of neighbors
e Fixed ordering of neighbors e No ordering of neighbors



Graph Neural Networks

Gilmer et al. 2017



Problem: Many Graphs are Dynamic
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Dynamic Graphs

- Discrete-time dynamic graphs: sequence of snapshots
- Continuous-time dynamic graphs: sequence of timed-events
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Learning on Dynamic Graphs

1 <ty <t3 <ty <t5 <tg <ty

- Datais a sequence of ordered timed events (eg.

edge addition) 1 —t; (2
- An epoch goes through the events in chronological

order . . . o 2 _t2_)<’3\}
- Model is trained self-supervised, predicting future - —

edges using all information from previous edges _{" 4 "’;_t?)_)@


https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1wtiqdBJYkCkNX_MGPycXvez1ytBCATE8

Model



TGN: Temporal Graph Networks

- Model for dynamic graphs is an encoder-decoder pair

- TGN is an encoder model which is able to generate temporal node embeddings z;(t) = f(i, )
for any node i and time t. Decoder is task-dependent, eg. MLP from two node embeddings

to edge probability
- General theoretical framework, which consists of 5 different modules

- Generalizes existing models such as Jodie[1] and TGAT[2]
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[1]Kumar et al. 2019, [2]Xu et al. 2019
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Modules: Memory

- State (vector) for each node the model has seen so far

- Compressed representation of all past interactions of a node
- Analogous to RNN hidden state, for one for each node

- Not a parameter — updated also at test time

- Initialized at 0, it can handle new nodes (inductive)
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https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Message Function

- Given an interaction (i,5), computes messages for the source and the destination
- Maessages will be used to update the memory

m; (t) = msg (s;(t"), Sj (t7),t, €ij (1),
m;(t) = msg(s;(t),si(t),t, ei;(t))

Messages


https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Memory Updater

- Updates memory using new messages

s;(t) = mem (m;(t),s;(t7))
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Modules: (Graph) Embedding

- Computes the temporal embedding of a node (which can be then
used for prediction) using the graph
- Solves the staleness problem (memory becoming out of date)
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TGN: Overview
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Learning TGN

- Problem: Given a batch, interaction serves both as our training
target and as information to update the memory

- If we first update the memory (with the ground truth interactions),
and then predict the same interactions, the memory would
contain information about what we want to predict

- However, predicting before updating the memory causes all
memory-related modules not to receive a gradient

- Solution: Update memory first, but using interactions from
previous batch



Learnlng TGN Dlagram
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Scalability

Memory is not a parameter and we can just think of it
as an additional feature vector for each node which we
change over time

Only memory for nodes involved in a batch is in GPU
memory at any time

Model is as scalable as GraphSage — Can scale to very
large graphs (even if we don’t show this in the paper)



Experiments



Experiments: Future Edge Prediction

Wikipedia Reddit Twitter
Transductive Inductive Transductive Inductive Transductive Inductive
GAE* 91.44 4+ 0.1 f 93.23 + 0.3 f - f
VAGE* 91.34 + 0.3 f 92.92 + 0.2 t — t
DeepWalk* 90.71 + 0.6 f 83.10+ 0.5 f — t
Node2Vec* 91.48 4+ 0.3 f 84.58 + 0.5 f - f
GAT* 94.73+0.2 91.27+04 97.33+0.2 9537+0.3 67.57+04 62.32+05
GraphSAGE* 93.56 £0.3 91.09+0.3 97.65+0.2 96.27+0.2 65.794+0.6 60.13+0.6
CTDNE 92.17+ 0.5 f 91.41+0.3 f — f
JODIE 94.33+0.4 91.29+0.5 96.36+0.5 94.62+0.5 62.05+1.0 52.72+1.6
TGAT 95.344+0.1 9399+0.3 98.12+0.2 96.62+0.3 67.84+0.6 62.21+0.6
TGN-attn 98.64 +0.1 98.05+0.1 9880+0.1 97.71+0.1 93.66+13 90.16+2.4




Experiments: Dynamic Node Classification

Wikipedia Reddit
GAE*® 74.85 £0.6 58.39+0.5
VAGE* 73.67 £0.8 57.98+0.6
GAT* 82.34 £0.8 64.521+0.5
GraphSAGE* 82.42+0.7 61.24 +0.6
CTDNE 75.89 £0.5 959.43+0.6
JODIE 87.17 0.5 959.50+ 2.1
TGAT 83.69 £ 0.7 65.56 = 0.7
TGN-attn 88.56 0.3 68.63 0.7
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JODIE node RNN time —f id
TGAT — — attn (21, 20n)* — -
TGN-attn node GRU attn (11, 10n) last id
TGN-21 node GRU attn (21, 10n) last id
TGN-no-mem — — attn (11, 10n) — id
TGN-time node GRU time last id
TGN-id node GRU id last id
TGN-sum node GRU sum (11, 10n) last id
- Faster and more accurate than other approaches TGN-mean node GRU attn (11, 10n) mean id
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Future Work

- Benchmark datasets for dynamic graphs (see OGB)
- Global (graph-wise) memory

- Investigate scalability and propose methods which scale better
(possibly combining with literature on graph sampling, but not trivial)

- Applications: anomaly detection, molecular pathways, financial
transactions, and more?


https://ogb.stanford.edu/docs/team/

Conclusion

- Dynamics graphs are very common, but have received
little attention so far

- We propose TGN, which generalizes existing models and
achieves SOTA results on a variety of benchmarks

- We design an efficient algorithm for training the
memory-related modules

- The ablation study shows the importance of the different
modules



Questions?



