


graphs and missing node features?




Networks are everywhere

And graphs are a great way to model them
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Graph Neural Networks (GNNSs)

Convolutional GNN Message-Passing GNN
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GNNs’ Unspoken Assumption

They require a fully observed feature matrix

Expected by GNNs: Real world:

Unknown Feature

Known Feature




In the real world node features are often missing

Think of user demographics (eg. age) in a social network
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Can we learn on graphs with missing node features?

The goal is to solve a downstream task such as node classification
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Simplest approach: impute then predict

Imputation step can be task-agnostic
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Previous Work

A largely unexplored problem

GCNMF [1]: Represents the missing data with a Gaussian Mixture Model and
computes expected activation for first GCN layer

PaGNN [2]: Partial GCN-like message-passing which only propagates observed
features in the first layer

Problems:

e Suffer in regimes on high rates of missing features (>90%)
e Do not scale to large graphs

[1] Taguchi et al., 2020; [2] Jiang and Zhang, 2020



Our ldea: Reconstruction which promotes
smoothness on the graph

Homophily assumption (measured through Dirichlet energy)
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Some Notation

Node Features:
Adjacency Matrix:

Degree Matrix:

Normalized Adjacency:

Laplacian Matrix:

Known Features

-
Unknown Features
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Our ldea: Reconstruction which promotes
smoothness on the graph

Homophily assumption (measured through Dirichlet energy)

Dirichlet Energy

[K(:x, G) = %XTAX = %Z&Z](.’Bz — J?j)z}
i

X;, = argmin £
X’U,

[x:; = —AAT x1k }

Closed-form solution for missing features
that minimizes the Dirichlet Energy



Scalable minimization with the gradient flow

We can minimize the Dirichlet Energy by doing diffusion on the graph.
Let’s look at the unconstrained case first

Gradient of the / _ 1T —
X = =x' Ax = Ax

Dirichlet Energy: Vxl(x, G) = Vx 2
Differential equation whose

Gradient flow: [x(t) = -Vl = —Ax(t)]—f solution at t->« minimizes the
Dirichlet Energy

Euler Method [X(t+1) — x® _ Ax®

Discretization: -

Solve the above equation
by discretizing it

Minimizing the Dirichlet Energy
amounts to repeatedly multiplying
by normalized adjacency




Scalable minimization with the gradient flow

With boundary conditions (i.e. constraints on the known features)

Known features are left unchanged

by diffusion
I 0
x(t+1) — [ ~ _ ]x(t)
‘Auk’ ‘Auu,
Diffusion from known Diffusion among

features to unknown ones unknown features



Feature Propagation Algorithm (FP)

Extremely simple and scalable

Step 0
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Algorithm 1 Feature Propagation

1: Input: feature vector x, diffusion matrix A

2: y< X

3: while x has not converged do

4: x — Ax > Propagate features
5 Xk < Yk > Reset known features
6: end while




Feature Propagation Algorithm (FP)

Extremely simple and scalable

. Known Feature

structed Feature



Intuition Behind FP

It acts as a low pass filter, similarly to most GNNs
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Differences with Label Propagation

Algorithmically Similar, but:

Label Propagation: Feature Propagation:
e Propagates class labels (discrete) e Propagates features (continuous)
e Prediction is obtained directly from e Prediction is made by a GNN on top of the
propagating class labels propagated features
e Feature-agnostic e Uses features, and a low % of them being

present is enough for good performance
e Effective solution for missing features problem



ell does FP work?




Node Classification Results

Accuracy as a function of the rate of missing features
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Node Classification Results

We evaluated on six common benchmarks
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Node Classification with 1% of Features

FP can withstand surprisingly high rates of missing features

Dataset GCNMF PaGNN Label Propagation FP (Ours)

Cora 34.54+2.07 58.03+0.57 74.68+0.36 78.22+0.32
CiteSeer 30.65+£1.12 46.02+0.58 64.60+0.40 65.40+0.54
PubMed 39.80+£0.25 54.254+0.70 73.81£0.56 74.29+0.55
Photo 29.64+2.78 85.41+0.28 83.45+0.94 87.73+0.27
Computers 30.74+£1.95 77.91+0.33 74.48+0.61 80.94+-0.37
OGBN-Arxiv OOM 53.98+0.08 67.56+0.00 69.09+0.06
OGBN-Products OOM OOM 74.42+0.00 74.94+-0.07




Zooming in to FP

FP only incurs in an average drop of ~4% of relative accuracy when 99% of the
features are missing

Dataset

Full Features

50.0% Missing

90.0% Missing

99.0% Missing

Cora

CiteSeer
PubMed

Photo
Computers
OGBN-Arxiv
OGBN-Products
Average

80.39%
67.48%
77.36%
91.73%
85.65%
12:22%
78.70%
79.08%

79.70%(-0.86%)
65.74%(-2.57%)
76.68%(-0.89%)
91.29%(-0.48%)
84.77%(-1.04%)
71.42%(-1.10%)
77.16%(-1.96%)
7811%(-1.27%)

79.77%(-0.77%)
65.57%(-2.82%)
75.85%(-1.96%)
89.48%(-2.46%)
82.71%(-3.43%)
70.47%(-2.43%)
75.94%(-3.51%)
77.119%(-2.48%)

78.22%(-2.70%)
65.40%(-3.08%)
74.29%(-3.97%)
87.73%(-4.36%)
80.94%(-5.51%)
69.09%(-4.33%)
74.94%(-4.78%)

75.80%(-4.10%)




FP is Fast and Scalable

FP Reconstruction + GNN Training
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FP is Fast and Scalable

FP Reconstruction Only

# Nodes # Edges Python BigQuery
OGBN-Products | ~2.5M ~123M ~10s (1 GPU) /

Twitter Internal ~800M ~10B ~2h (1 large CPU) | ~45m



When does FP work?

Spoiler: it does not work well on heterophilic graphs

99% Missing Features
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Future Directions

Some open questions

e End-to-end learnable diffusion
e Feature channel mixing

e Extension to heterophilic data



Conclusions

What you should take away from today

e Missing node features is a widespread problem
e Theoretically motivated approach

e Robust to high rates of missing features (>90%)
e Scalable and fast

e Limitations: It requires the graph to be homophilous
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