
Machine Learning on
Dynamic Graphs and

Temporal Graph Networks
Emanuele Rossi, Twitter & Imperial College
In collaboration with Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti and

Michael Bronstein

Background

Plot: Pau Rodríguez López

ICLR 2020 submissions keyword statistics

Graph Neural Networks are a Hot Topic in
ML!

Graphs are everywhere

Social Networks

Molecules

Functional Networks

Interaction Networks

From Images to Graphs

● Constant number of neighbors

● Fixed ordering of neighbors

● Different number of neighbors

● No ordering of neighbors

Graph Neural Networks

Gilmer et al. 2017

i

j

Problem: Many Graphs are Dynamic

Social Networks Interaction Networks

Research Questions:
● How do we make use of the timing information to generate a better representation of nodes?
● Can we predict when and how the graph will change in the future?

○ When will a user interact with another user?
○ Which users will interact with a given tweet in the next hour?

From Static to Dynamic Graphs

Continuous-Time Dynamic
Graph (CTDGs)

● Most general formulation
● Each change (‘event’) in the graph

is observed individually with its
timestamp

● Examples: Social networks,
interaction networks, financial
transaction networks

Static Graph
● No notion of

time

Spatio-Temporal Graph
● Topology is fixed, but features change

over time
● (Usually) observed at regular intervals
● Examples: traffic forecasting, covid-19

forecasting

Discrete-Time Dynamic Graph (DTDGs)
● Both topology and features change over time
● However, graph is observed at regular

intervals (no information about what happens
in between)

● Examples: Any system which is observed at
regular intervals

Less General More General

CTDGs: Many Types of Events

Node Edge

Creation User joins platform User follows another user

Deletion User leaves platform User unfollows another user

Feature Change User updates their bio User changes retweet message

Why is Learning on Dynamic
Graphs Different?
Model needs to:

- Handle different types of events
- Use the time information of the events
- Efficiently and incrementally incorporate new events at test time
- Different tasks: predict when something will happen

Using a static GNN would mean:
- Loss of information: Model would use the last snapshot of the graph, but not

able to take into account how the graph evolved
- Inefficiency: computation is repeated each time we want to compute a node

embedding
- No way to do time prediction

Model

Temporal Graph Model

Graph up to time t
(ordered sequence of events)

Temporal node embeddings Node classifications at time t

Encoder Decoder

Encoding a Temporal Graph

Idea 1:

- Process events in order using an RNN, with a different hidden state per node
- Final hidden states can be used as temporal node embeddings
- Pros:

- Built in bias of sequentiality
- Cons:

- Not using the graph of interactions directly
- Suffer from the memory staleness problem

Kumar et al. 2019, Trivedi et al. 2018

Assume our temporal graph consists only of edge creation events:

Encoding a Temporal Graph
Idea 2:

- Use a GNN with attention and use timestamps as edge features
- Pros:

- More efficient as no need for sequential processing
- Using the graph explicitly → Mitigates staleness problem

- Cons
- Can only handle edge addition events
- Not suitable to online updates

Xu et al. 2019

TGN: Temporal Graph Networks
- Combines sequential processing of events with GNN

- Handles general event types: each event generates a message which is then used to
update nodes’ representations

- Uses GNN directly on graph of interaction, combining the computed hidden states
with node features

- General theoretical framework, which consists of 5 different modules

- Generalizes existing models such as Jodie[1], TGAT[2] and DyRep[3]

[1]Kumar et al. 2019, [2]Xu et al. 2019, [3]Trivedi et a. 2018

https://app.diagrams.net/?page-id=1537u-hYUmsisSEVlVmX&scale=auto#G1A5BRYas7jtvKrMbzdiMBzAPTgBexpykc

Modules: Memory
- Analogous to RNN hidden state, one for each node
- State (vector) for each node the model has seen so far
- Compressed representation of all past interactions of a node
- Not a parameter → updated also at test time
- Initialized at 0, it can handle new nodes (inductive)

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Message Function
- Each event generates a message
- Messages will be used to update the memory
- Given an interaction , computes messages for the source and the

destination

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Memory Updater
- Updates memory using new messages

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Modules: Graph Embedding
- A GNN which computes the temporal embedding of a node (which

can be then used for prediction) using the graph and the memory
- Solves the staleness problem (memory becoming out of date)

https://app.diagrams.net/?page-id=okLoJMft42n3U-MHGWuY&scale=auto#G1W-sjrsrsJURJb0Ld7tWUwU9RGfKxofMx

Link Prediction with TGN

Tasks

- Dynamic Node Classification

- Future Link Prediction

- Dynamic Graph Classification

Future Link Prediction
- Data is split chronologically

- Eg. if data spans 1 year → First 10 months train set, 11th month
validation and 12th month test set

- Model predicts events sequentially (all previous events are used to
predict the next one)

- We design an efficient training algorithm to speed up learning

Scalability
- Memory is not a parameter and we can just think of it

as an additional feature vector for each node which we
change over time

- Only memory for nodes involved in a batch is in GPU
memory at any time

- Model is as scalable as GraphSage → Can scale to very
large graphs (even if we don’t show this in the paper)

Experiments

Experiments: Future Edge Prediction

Experiments: Dynamic Node Classification

Ablation Study
(Future edge prediction)

- Faster and more accurate than other approaches

- Memory (TGN-att vs TGN-no-mem) leads to a vast
improvement in performance

- Embedding module is also extremely important
(TGN-attn vs TGN-id) and graph attention performs
best

- Using the memory makes it enough to have 1 graph
attention layer

Predicting when events will
happen

- Qualitatively different question from other tasks
- A decoder which makes use of Temporal Point Processes is needed [3]

Applications:

- When will two users interact again?
- How many retweets will a given tweet have in the next 30 or 60

minutes?

[3] Trivedi et al. 2018

Future Work
- Benchmark datasets for dynamic graphs (see OGB)

- Method Extensions: Global (graph-wise) memory, continuous models
(eg. neural ODEs) to model the memory evolution

- Scalability: Propose methods which scale better (possibly combining
with literature on graph sampling, but not trivial)

- Applications: Social Networks (eg. recommender systems, virality
prediction), biology (eg. molecular pathways, cancer evolution),
finance (eg. fraud detection) and more?

https://ogb.stanford.edu/docs/team/

Conclusion
- Dynamics graphs are very common, but have received

little attention so far

- We propose TGN, a general encoder for dynamic graphs
which achieves SOTA results on a variety of benchmarks

- We design an efficient algorithm for training the
memory-related modules

- The ablation study shows the importance of the different
modules

Questions?

@emaros96

