A Primer on Graph Neural Networks

Emanuele Rossi, Imperial College London Colt, November 2023

But First, A Little Bit About Myself

It All Started in Imola

Even though I don't like F1...

2015: I Then Moved to London

2018: MPhil @ Cambridge

2019: Fabula Al

2019: Twitter acquires Fabula

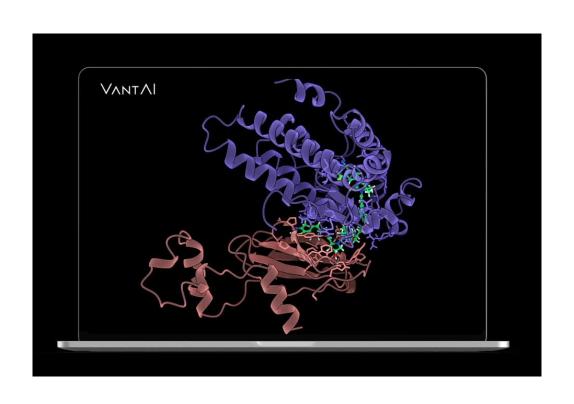
2020: Start PhD with Twitter and Imperial

2021: Remote from Barcelona

2022: What the Heck

So I Took a Break

2024: Drug Discovery @ Vant Al



Why Should We Care About Graph Neural Networks?

Networks are everywhere

And graphs are a great way to model them

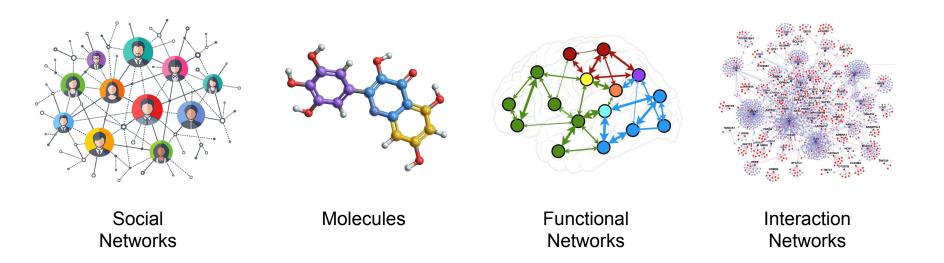
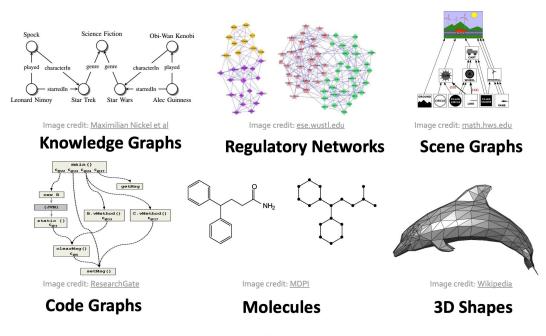


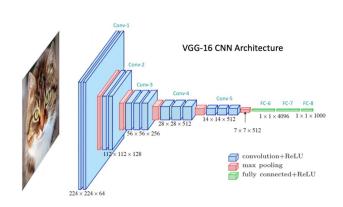
Image Credit: https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica Image Credit: https://gatton.uky.edu/about-us/stay-connected/news/2020/links-center-social-network-analysis-workshop-success Image Credit: Papo et al., "Reconstructing functional brain networks: have we got the basics right?", Frontiers in Human Neuroscience 2014 Image Credit: Madhavicmu / Wikimedia Commons / CC-BY-SA-4.0

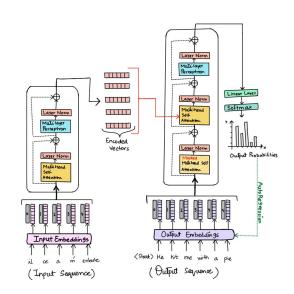
Networks are everywhere

And graphs are a great way to model them



What Models Should We Use?





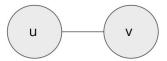
?

Graphs and Graph Tasks

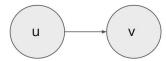
Graph Definition

$$G = (V, E)$$

- V is a set of nodes
- E is a set of tuples of form (u, v), where there is an edge between u and v
- G is a graph



Undirected edge



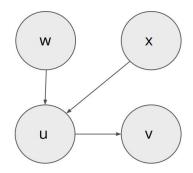
Directed edge

The Adjacency Matrix

Adjacency Matrix: $\mathbf{A} \in \mathbb{R}^{|V| \times |V|}$

- In this example, binary matrix encoding of a unweighted graph
- Rows/columns number the nodes, matrix elements encode edges

$$V = \{u, v, w, x\}; E = \{(w, u), (x, u), (u, v)\}$$



$$\mathbf{A} =$$

u	V	W	X		
0	1	0	0	_	
0	0	0	0	<	(from)
1	0	0	0	€	
1	0	0	0	×	

(to)

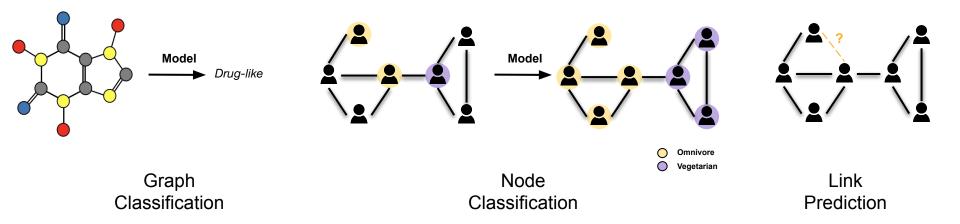
Do the matrices encode the same graph?

0	1	0	0
0	0	0	0
1	0	0	0
1	0	0	0

	0	0	0	0		
	0	0	1	0		
	1	0	0	0		
	0	0	1	0		

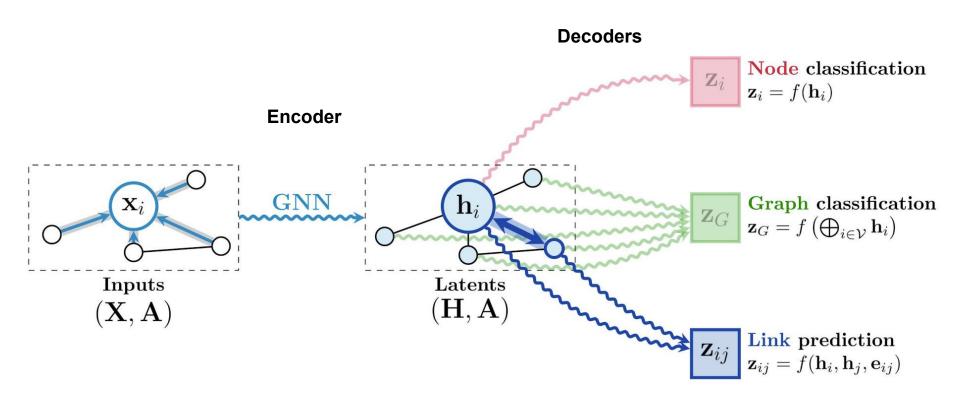
Hint: Have we given you enough information?

Tasks on Graphs

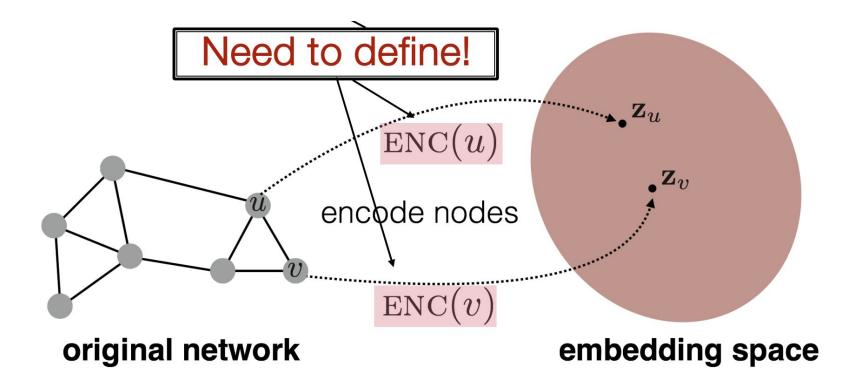


Encoder-Decoder Framework

Encoder-Decoder Framework

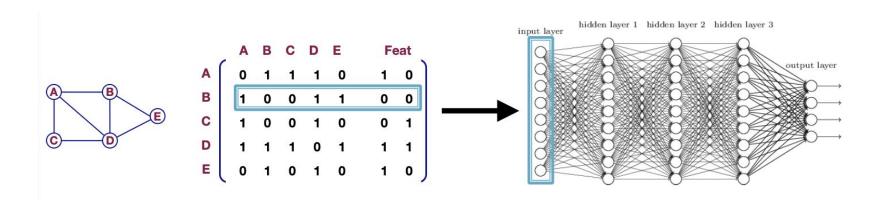


Focus on the GNN Encoder



GNN Encoders

MLP for Graphs



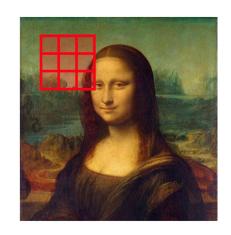
- O(|V|) parameters
- Cannot handle graphs of different size
- Gives different results for different orderings of the graph

Permutation Invariance

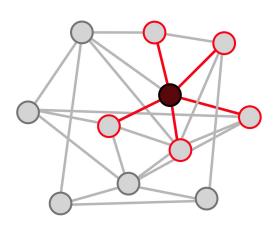
$$f\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \mathbf{y} = f\left(\begin{array}{c} x_2 \\ x_3 \\ x_3 \end{array}\right)$$

Invariance: $f(\mathbf{PX}, \mathbf{PAP}^{\top}) = f(\mathbf{X}, \mathbf{A})$

Starting from Convolution

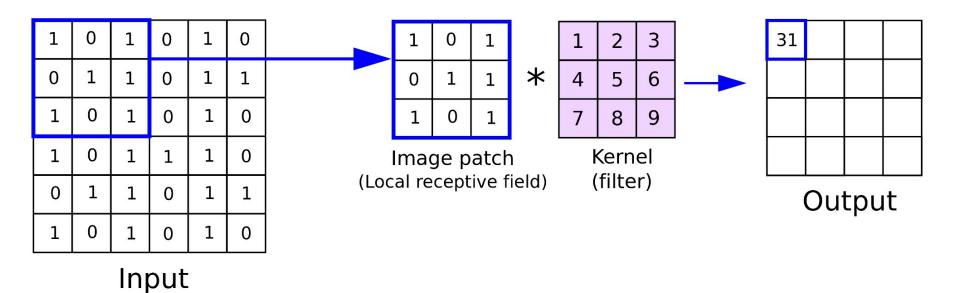


Convolutional Neural Networks



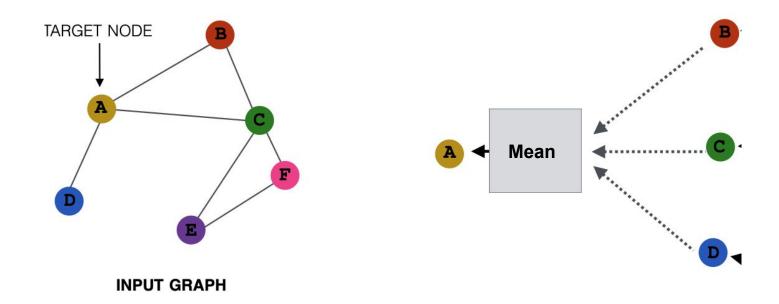
Graph Neural Networks

Convolution is a Weighted Average of Neighboring Pixels



Idea: Take Plain Average of Neighbors

Plus a transformation shared by all neighbors



Simple Graph Convolutional Layer

$$\mathbf{h}_{i}^{(l)} = \sigma(\frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \mathbf{h}_{j}^{(l-1)} \mathbf{W}^{(l-1)})$$

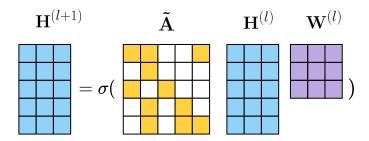
Sum is a permutation invariant operator

Single weight matrix shared by all nodes, compared to convolution where you have kxk matrices

Simple Graph Convolutional Layer

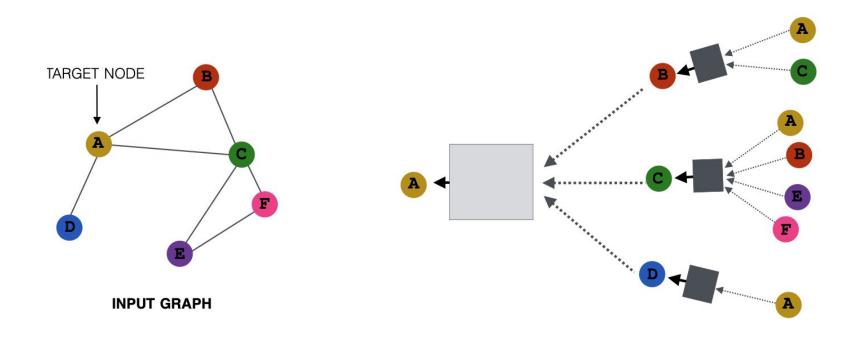
In matrix form

$$\mathbf{H}^{(l+1)} = \sigma(\tilde{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l)})$$
$$\mathbf{H}^{(0)} = \mathbf{X}$$

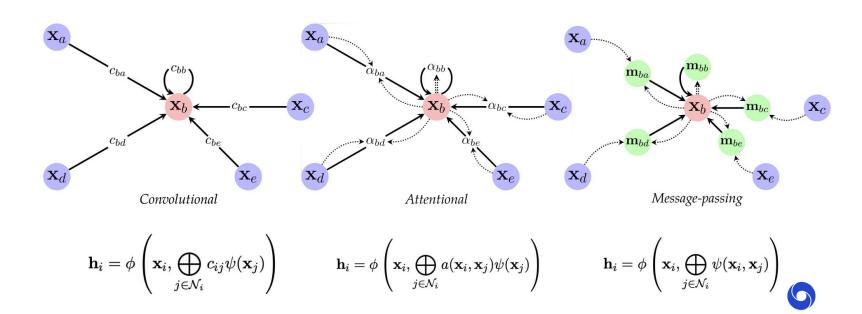


Stacking Multiple Layers

It allows to aggregate from further away in the graph



The three "flavours" of GNN layers

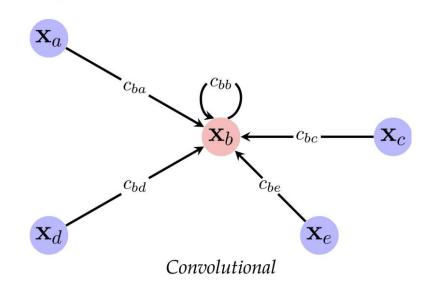


Convolutional GNN

• Features of neighbours aggregated with fixed weights, c_{ij}

$$\mathbf{h}_i = \phi\left(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} c_{ij} \psi(\mathbf{x}_j)\right)$$

- Usually, the weights depend directly on A.
 - ChebyNet (Defferrard et al., NeurlPS'16)
 - GCN (Kipf & Welling, ICLR'17)
 - o SGC (Wu et al., ICML'19)
- Useful for homophilous graphs and scaling up
 - When edges encode label similarity

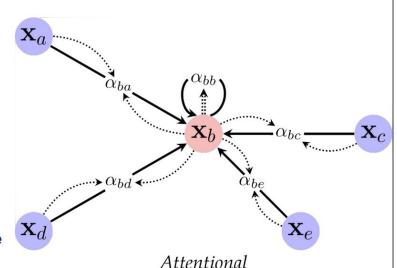


Attentional GNN

Features of neighbours aggregated with implicit weights (via attention)

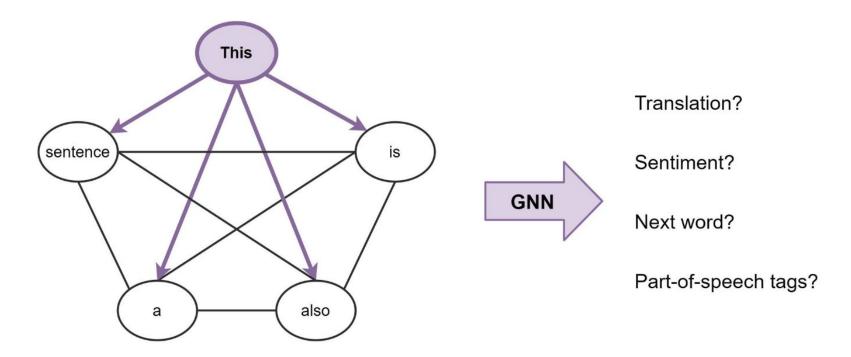
$$\mathbf{h}_i = \phi \left(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} a(\mathbf{x}_i, \mathbf{x}_j) \psi(\mathbf{x}_j) \right)$$

- Attention weight computed as $a_{ij} = a(x_i, x_i)$
 - MoNet (Monti et al., CVPR'17)
 - GAT (Veličković et al., ICLR'18)
 - o GaAN (Zhang et al., UAI'18)
- Useful as "middle ground" w.r.t. capacity and scale
 - Edges need not encode homophily
 - But still compute scalar value in each edge



Transformers are GNNs

On the fully connected graphs



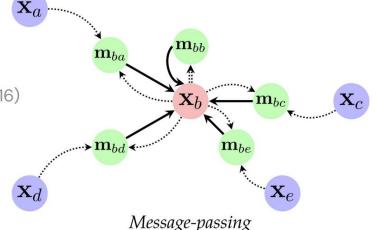
See "Transformers are Graph Neural Networks"

Message-passing GNN

• Compute **arbitrary vectors** ("messages") to be sent across edges

$$\mathbf{h}_i = \phi\left(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}_i} \psi(\mathbf{x}_i, \mathbf{x}_j)\right)$$

- Messages computed as $\mathbf{m}_{ij} = \psi(\mathbf{x}_{i'}, \mathbf{x}_{j})$
 - o Interaction Networks (Battaglia et al., NeurIPS'16)
 - MPNN (Gilmer et al., ICML'17)
 - GraphNets (Battaglia et al., 2018)
- Most generic GNN layer
 - May have scalability or learnability issues
 - o Ideal for computational chemistry, reasoning and simulation



My Research: Challenges in the Real World

Scalability, Temporality, Missing Data, Directed Graphs

Scalability [1, 2]

Learning on web-scale graphs

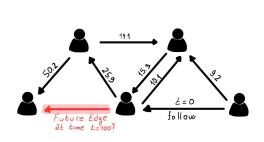


^[1] Rossi et al., "SIGN: Scalable Inception Graph Neural Networks", ICML 2020 GRL Workshop;

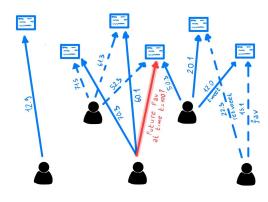
^[2] Chamberlain et al., "Link Prediction with Subgraph Sketching", ICLR 2023;

Dynamic Graphs [3, 4]

Graphs changing over time



Social Networks



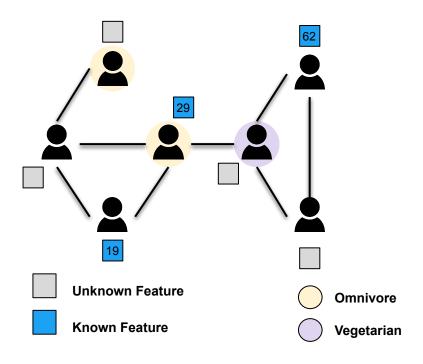
Interaction Networks

^[3] Rossi et al., "Temporal Graph Networks For Deep Learning On Dynamic Graphs", ICML 2020 GRL Workshop;

^[4] S. Huang et al., "Temporal Graph Benchmark for Machine Learning on Temporal Graphs", NeurIPS 2023 Datasets and Benchmarks;

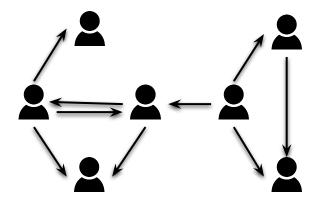
Missing Node Features [5]

Think of user demographics (eg. age) in a social network



Directed Graph Neural Networks [6]

When edges have a direction



Resources and Tools

Great resources to learn more

- A Gentle Introduction to Graph Neural Networks (Distill Blog Post)
- Stanford CS224W: Machine Learning with Graphs
- Graph Neural Networks: Foundations, Frontiers, and Applications
- PyG: PyTorch best library for GNNs

Questions?

@emaros96 www.emanuelerossi.co.uk