A Tale of Edge **Directionality in Graph Neural Networks**

Emanuele Rossi, Imperial College London September 2023, Temporal Graph Reading Group

Graphs are Often Directed

Citation, social (interaction) and hyperlink networks among others

TGB Link Prediction Datasets

Scale	Name	Package	#Nodes	#Edges*	#Steps	Surprise	Metric				
Small	tgbl-wiki-v2	0.1.2	9,227	157,474	152,757	0.108	MRR				
Small	tgbl-review-v2	0.1.2	352,637	4,873,540	6,865	0.987	MRR				
medium	tgbl-coin	0.1.2	638,486	22,809,486	1,295,720	0.120	MRR				
large	tgbl-comment	0.1.2	994,790	44,314,507	30,998,030	0.823	MRR				
large	tgbl-flight	0.1.2	18,143	67,169,570	1,385	0.024	MRR				
		🚿 Dir	ected								

Spectral GNNs [1] require an undirected graph to define convolution

$$\begin{aligned} \mathbf{y} &= f_{\theta}(\mathbf{L})\mathbf{x} \\ &= f_{\theta}(\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top})\mathbf{x} \\ &= \mathbf{U}f_{\theta}(\mathbf{\Lambda})\mathbf{U}^{\top}\mathbf{x} \end{aligned}$$

Eigendecomposition requires a **symmetric Laplacian** \rightarrow the graph has to be **undirected**

[1] M. Defferrard et al., "Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering", NeurIPS 2016

Spatial Methods (MPNNs) also fail to deal with directionality

$$\begin{split} \mathbf{m}_{i}^{(k)} &= \mathrm{AGG}^{(k)} \left(\{ \{ \mathbf{x}_{j}^{(k-1)} : (i,j) \in E \} \} \right) \\ \mathbf{x}_{i}^{(k)} &= \mathrm{COM}^{(k)} \left(\mathbf{x}_{i}^{(k-1)}, \mathbf{m}_{i}^{(k)} \right) \end{split}$$

[2] J. Gilmer et al., "Neural Message Passing for Quantum Chemistry", ICML 2017

Making the graph undirected has become part of the standard preprocessing

```
def parse npz(f):
14 \vee
15
           x = sp.csr_matrix((f['attr_data'], f['attr_indices'], f['attr_indptr']),
                             f['attr shape']).todense()
16
17
           x = torch.from numpy(x).to(torch.float)
           x[x > 0] = 1
18
19
           adj = sp.csr_matrix((f['adj_data'], f['adj_indices'], f['adj_indptr']),
20
21
                               f['adi shape']).tocoo()
22
           row = torch.from numpy(adj.row).to(torch.long)
           col = torch.from numpy(adj.col).to(torch.long)
23
24
           edge index = torch.stack([row, col], dim=0)
25
           edge index, = remove self loops(edge index)
26
           edge_index = to_undirected(edge_index, num_nodes=x.size(0))
27
28
           y = torch.from numpy(f['labels']).to(torch.long)
29
30
           return Data(x=x, edge index=edge index, y=y)
```

Undirected graphs perform equally well in common (homophilic) benchmarks

Homophily and Heterophily

GNNs Struggle on Heterophilic Data

Measuring Homophily

Undirected Graphs

					- 1.0
0 0.18	3 0.42	0.12	0.13	0.15	- 0.8
н 0.37	7 0.19	0.15	0.13	0.16	- 0.6
∾ 0.10	0 0.14	0.24	0.25	0.28	
m 0.09	9 0.11	0.22	0.26	0.31	- 0.4
4 0.10	0 0.12	0.23	0.29	0.27	- 0.2
0	1	2	3	4	- 0.0

$$h = \frac{1}{|V|} \sum_{i \in V} \frac{\sum_{j \in \mathcal{N}(i)} I[y_i = y_j]}{d_i}$$

Node Homophily

Measuring Homophily

Weighted directed graphs

$$h(\mathbf{S}) = \frac{1}{|V|} \sum_{i \in V} \frac{\sum_{j \in \mathcal{N}(i)} s_{ij} I[y_i = y_j]}{\sum_{j \in \mathcal{N}(i)} s_{ij}}$$

Directed 2-hops

There are four different 2-hops for directed graphs

Effective Homophily

Going beyond the immediate neighbors

$$h^{\text{(eff)}} = \max_{k \ge 1} \max_{\mathbf{C} \in \mathcal{B}^k} h(\mathbf{C})$$
Higher-order hops

Directionality Enhances Effective Homophily Synthetic graphs

Directionality Enhances Effective Homophily Beal-world datasets

		\mathbf{A}_{u}	\mathbf{A}_{u}^{2}	$h_u^{(\mathrm{eff})}$	Α	\mathbf{A}^{\top}	$\mathbf{A}^{\top}\mathbf{A}$	$\mathbf{A}\mathbf{A}^\top$	$h_d^{(\mathrm{eff})}$	$h_{ m gain}^{ m (eff)}$
	CITESEER-FULL	0.958	0.951	0.958	0.954	0.959	0.971	0.951	0.971	1.36%
Homophilic	CORA-ML	0.810	0.767	0.810	0.808	0.833	0.803	0.779	0.833	2.84%
	OGBN-ARXIV	0.635	0.548	0.635	0.632	0.675	0.658	0.556	0.675	6.3%
	CHAMELEON	0.248	0.331	0.331	0.249	0.274^{-}	0.383	$\bar{0.335}$	0.383	15.71%
	SQUIRREL	0.218	0.252	0.252	0.219	0.210	0.257	0.258	0.258	2.38%
	ARXIV-YEAR	0.289	0.397	0.397	0.310	0.403	0.487	0.431	0.487	22.67%
Heterophilic	SNAP-PATENTS	0.221	0.372	0.372	0.266	0.271	0.478	0.522	0.522	40.32%
	ROMAN-EMPIRE	0.046	0.365	0.365	0.045	0.042	0.535	0.609	0.609	66.85%

Directionality Enhances Effective Homophily

An intuitive example

Dir-GNN

Aggregate from both in- and out-neighbors, but separately

$$\begin{split} \mathbf{m}_{i,\leftarrow}^{(k)} &= \mathrm{AGG}_{\leftarrow}^{(k)} \left(\{ \{ \mathbf{x}_{j}^{(k-1)} : (j,i) \in E \} \} \right) \\ \mathbf{m}_{i,\rightarrow}^{(k)} &= \mathrm{AGG}_{\rightarrow}^{(k)} \left(\{ \{ \mathbf{x}_{j}^{(k-1)} : (i,j) \in E \} \} \right) \\ \mathbf{x}_{i}^{(k)} &= \mathrm{COM}^{(k)} \left(\mathbf{x}_{i}^{(k-1)}, \mathbf{m}_{i,\leftarrow}^{(k)}, \mathbf{m}_{i,\rightarrow}^{(k)} \right) \end{split}$$

Separate aggregation of in- and out-neighbors

From GCN to Dir-GCN

A general framework which can be used to extend any MPNN to directed graphs

$$\mathbf{X}^{(k)} = \sigma \left(\mathbf{A}_{u} \mathbf{X}^{(k-1)} \mathbf{W}^{(k)} \right)$$
$$\tilde{\mathbf{A}}_{u} = \mathbf{D}_{u}^{-1/2} \mathbf{A}_{u} \mathbf{D}_{u}^{-1/2}$$
$$\downarrow$$
$$\mathbf{X}^{(k)} = \sigma \left(\mathbf{A}_{\rightarrow} \mathbf{X}^{(k-1)} \mathbf{W}_{\rightarrow}^{(k)} + \mathbf{A}_{\rightarrow}^{\top} \mathbf{X}^{(k-1)} \mathbf{W}_{\leftarrow}^{(k)} \right)$$
$$\mathbf{A}_{\rightarrow} = \mathbf{D}_{\rightarrow}^{-1/2} \mathbf{A} \mathbf{D}_{\leftarrow}^{-1/2}$$

Dir-GNN Leads to More Homophilic Aggregations It treats different 2-hops differently

 $\mathbf{X}^{(2)} = \mathbf{A}_{\rightarrow}^{2} \mathbf{X}^{(0)} \mathbf{W}_{\rightarrow}^{(1)} \mathbf{W}_{\rightarrow}^{(2)} + (\mathbf{A}_{\rightarrow}^{\top})^{2} \mathbf{X}^{(0)} \mathbf{W}_{\leftarrow}^{(1)} \mathbf{W}_{\leftarrow}^{(2)}$ $+ \mathbf{A}_{\rightarrow} \mathbf{A}_{\rightarrow}^{\top} \mathbf{X}^{(0)} \mathbf{W}_{\leftarrow}^{(1)} \mathbf{W}_{\rightarrow}^{(2)} + \mathbf{A}_{\rightarrow}^{\top} \mathbf{A}_{\rightarrow} \mathbf{X}^{(0)} \mathbf{W}_{\rightarrow}^{(1)} \mathbf{W}_{\leftarrow}^{(2)}$

Expressivity Analysis Dir-GNN is strictly more expressive than MPNNs

Theorem 4.1 (Informal). Dir-GNN is as expressive as D-WL if $AGG_{\rightarrow}^{(k)}$, $AGG_{\leftarrow}^{(k)}$, and $COM^{(k)}$ are injective for all k.

Theorem 4.2 (Informal). Dir-GNN is strictly more expressive than both MPNN-U and MPNN-D.

$Dir-GNN \subseteq MPNN-U$

MPNN-U fails to distinguish the two graphs below

Empirical Results

Synthetic task where the label of a node depends both on in- and out-neighbors

Empirical Results

Directionality leads to significant improvement on heterophilic datasets

Empirical Results

Dir-GNN achieves state-of-the-art results on five heterophilic benchmarks

	SQUIRREL	CHAMELEON	ARXIV-YEAR	SNAP-PATENTS	Roman-Empire
MLP	28.77 ± 1.56	46.21 ± 2.99	36.70 ± 0.21	31.34 ± 0.05	64.94 ± 0.62
GCN	53.43 ± 2.01	64.82 ± 2.24	46.02 ± 0.26	51.02 ± 0.06	73.69 ± 0.74
$H_2 \overline{GCN}$	$\overline{37.90} \pm 2.02$	59.39 ± 1.98	$\bar{49.09} \pm \bar{0.10}$	<u></u> 00 <u>M</u>	$\overline{60.11 \pm 0.52}$
GPR-GNN	54.35 ± 0.87	62.85 ± 2.90	45.07 ± 0.21	40.19 ± 0.03	64.85 ± 0.27
LINKX	61.81 ± 1.80	68.42 ± 1.38	56.00 ± 0.17	61.95 ± 0.12	37.55 ± 0.36
FSGNN	74.10 ± 1.89	78.27 ± 1.28	50.47 ± 0.21	65.07 ± 0.03	79.92 ± 0.56
ACM-GCN	67.40 ± 2.21	74.76 ± 2.20	47.37 ± 0.59	55.14 ± 0.16	69.66 ± 0.62
GLOGNN	57.88 ± 1.76	71.21 ± 1.84	54.79 ± 0.25	62.09 ± 0.27	59.63 ± 0.69
GRAD. GATING	64.26 ± 2.38	71.40 ± 2.38	63.30 ± 1.84	69.50 ± 0.39	82.16 ± 0.78
DIGCN	$\overline{37.74} \pm 1.54$	52.24 ± 3.65	ŌŌM	<u></u> 00 <u>M</u>	$5\bar{2}.\bar{7}1\pm 0.3\bar{2}$
MAGNET	39.01 ± 1.93	58.22 ± 2.87	60.29 ± 0.27	OOM	88.07 ± 0.27
DIR-GNN	$\overline{\textbf{75.31} \pm \textbf{1.92}}$	79.71 ± 1.26	$\overline{64.08} \pm \overline{0.26}$	$7\bar{3}.\bar{9}5\pm0.05$	$9\bar{1}.\bar{2}\bar{3}\pm 0.\bar{3}\bar{2}$

Dir-GNN for Temporal Graphs

TGN [3] uses direction in message function, but discards it for the graph aggregation

Message Function

$$\mathbf{m}_{u}(t) = \operatorname{msg}_{s} \left(\mathbf{s}_{u}(t^{-}), \mathbf{s}_{v}(t^{-}), t, \mathbf{e} \right)$$
$$\mathbf{m}_{v}(t) = \operatorname{msg}_{d} \left(\mathbf{s}_{v}(t^{-}), \mathbf{s}_{u}(t^{-}), t, \mathbf{e} \right)$$
$$\operatorname{Direction-aware}$$

Graph Aggregation

$$\mathbf{Z}(t) = \text{GNN}(\mathbf{G}(t), \mathbf{E}(t), \mathbf{X}(t), \mathbf{S}(t))$$

[3] Rossi et al., "Temporal Graph Networks For Deep Learning On Dynamic Graphs", ICML 2020 GRL Workshop;

Conclusion

Dir-GNN achieves state-of-the-art results on five heterophilic benchmarks

- Edge **directionality** has largely been **ignored** in GNNs
- Preserving directionality can make heterophilic datasets more homophilic
- We introduce **Dir-GNN**, a general framework for learning on directed graphs
- Dir-GNN is **more expressive** than MPNNs on directed graphs
- Dir-GNN leads to large improvements on heterophilic datasets
- Many temporal datasets are directed!

@emaros96 www.emanuelerossi.co.uk