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Graphs are Often Directed

Citation, social (interaction) and hyperlink networks among others
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TGB Link Prediction Datasets

Scale

Small

Small

medium

large

large

Name Package #Nodes
tgbl-wiki-v2 0.1.2 9,227
tgbl-review-v2 0.1.2 352,637
tgbl-coin 0.1.2 638,486
tgbl-comment 0.1.2 994,790
tgbl-flight 0.1.2 18,143

Directed

#Edges*

157,474

4,873,540

22,809,486

44,314,507

67,169,570

#Steps

152,757

6,865

1,295,720

30,998,030

1,385

Surprise

0.108

0.987

0.120

0.823

0.024

Metric

MRR

MRR

MRR

MRR

MRR



The “Undirectedness” Assumption

Spectral GNNs [1] require an undirected graph to define convolution

y = fo(L)x cimmet Laplocan 1
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[1] M. Defferrard et al., “Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering”, NeurlPS 2016



The “Undirectedness” Assumption

Spatial Methods (MPNNSs) also fail to deal with directionality

in- and out-neighbors
treated equally
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[2] J. Gilmer et al., “Neural Message Passing for Quantum Chemistry”, ICML 2017



The “Undirectedness” Assumption

Making the graph undirected has become part of the standard preprocessing
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x = sp.csr_matrix((f['attr_data'], fl['attr_indices'], f['attr_indptr'l),
f['attr_shape'l).todense()

x = torch.from_numpy(x).to(torch.float)

x[x >0] =1

sp.csr_matrix((f['adj_data'l, fl['adj_indices'], fl['adj_indptr'l),

adj
f['adj_shape']).tocoo()
torch. from_numpy(adj.row).to(torch.long)

row
col = torch.from_numpy(adj.col).to(torch.long)

edge_index = torch.stack([row, coll, dim=0)

edge_index, _ = remove_self_loops(edge_index)

edge_index = to_undirected(edge_index, num_nodes=x.size(0))

y = torch.from_numpy(f['labels']).to(torch.long)

return Data(x=x, edge_index=edge_index, y=y)



The “Undirectedness” Assumption

Undirected graphs perform equally well in common (homophilic) benchmarks
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Homophily and Heterophily




GNNs Struggle on Heterophilic Data
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Measuring Homophily

Undirected Graphs
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Measuring Homophily

Weighted directed graphs
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Directed 2-hops

There are four different 2-hops for directed graphs
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Effective Homophily

Going beyond the immediate neighbors

R = max max h(C)
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Higher-order hops



Directionality Enhances Effective Homophily

Synthetic graphs
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Directionality Enhances Effective Homophily

Real-world datasets

A, A2 RED A AT ATA AAT RS Rl

CITESEER-FULL  0.958 0951 0958 , 0.954 0959 0971 0951 0971 , 1.36%

Homophilic CORA-ML 0.810 0.767 0.810 1 0.808 0.833 0.803 0.779 0.833 | 2.84%

OGBN-ARXIV ~ 0.635 0.548 0.635 1 0.632 0.675 0.658 0.556 0.675 | 6.3%
“““““ CHAMELEON 0248 0331 0331 '0249 0274 [0.383) 0.335 ~ 0.383 T 15.71%

SQUIRREL 0218 0252 0252, 0219 0210 0257 [0258] 0258  2.38%

ARXIV-YEAR  0.289 0.397 0.397 , 0.310 0.403 [0.487) 0431 0.487 |, 22.67%

Heterophilic =~ SNAP-PATENTS ~ 0.221 0372 0.372 | 0.266 0271 0478 [0.522] 0.522 | 40.32%

ROMAN-EMPIRE  0.046 0.365 0.365 | 0.045 0.042 0.535 0.609 | 66.85%




Directionality Enhances Effective Homophily

An intuitive example
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Dir-GNN

Aggregate from both in- and out-neighbors, but separately

m) = accl (11 i) e B
’ Separate aggregation
mgf; — AC (_]‘€> ({{X (k—1) (27] = E} of in- and out-neighbors




From GCN to Dir-GCN

A general framework which can be used to extend any MPNN to directed graphs
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Dir-GNN Leads to More Homophilic Aggregations

It treats different 2-hops differently

X (2) = A2_>X<O)W_1>>W<_2>) n (AL)QX(O)W@W@
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Expressivity Analysis

Dir-GNN is strictly more expressive than MPNNs

Theorem 4.1 (Informal). Dir-GNN is as expressive as D-WL if AGG(_k)), AGGSE), and COM) gre
injective for all k.

Theorem 4.2 (Informal). Dir-GNN is strictly more expressive than both MPNN-U and MPNN-D.



Dir-GNN £ MPNN-U

MPNN-U fails to distinguish the two graphs below




Empirical Results

Synthetic task where the label of a node depends both on in- and out-neighbors
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Empirical Results

Directionality leads to significant improvement on heterophilic datasets
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Empirical Results

Dir-GNN achieves state-of-the-art results on five heterophilic benchmarks

SQUIRREL CHAMELEON  ARXIV-YEAR SNAP-PATENTS ROMAN-EMPIRE

MLP 2877+ 1.56 46.21 £2.99 36.70+0.21 31.34 £ 0.05 64.94 + 0.62
GCN 53.43+£2.01 64.82+2.24 46.024+0.26 51.02 = 0.06 73.69 +£0.74

"H>GCN 3790+2.02 59.39+1.98 49.09+£0.10  OOM ¢ 60.11 £0.52
GPR-GNN 54.35+0.87 62.85+2.90 45.074+0.21 40.19 +£0.03 64.85 4+ 0.27
LINKX 61.81 +1.80 68.42+4+1.38 56.004+0.17 61.951+0.12 37.55 +0.36
FSGNN 74.10 =1.89 78.27+1.28 50.47 +0.21 65.07 £0.03 79.92 +0.56
ACM-GCN 67.40+2.21 74.76 =2.20 47.37 +0.59 55.14 £ 0.16 69.66 4+ 0.62
GLOGNN 57.88+1.76 71.21 £1.84 54.79 £+ 0.25 62.09 & 0.27 59.63 4+ 0.69
GRAD. GATING 64.26 £2.38 71.40+2.38 63.30+1.84 69.50 + 0.39 82.16 == 0.78

"DIGCN  37.744+1.54 5224+365 OOM  OOM ! 52.71 £0.32
MAGNET 39.01 £1.93 58.22+2.87 60.29 +0.27 OoOM 88.07 £ 0.27

" DIR-GNN  75.31+1.92 79.71+1.26 64.08+0.26 73.95+0.05  91.23+0.32




Dir-GNN for Temporal Graphs

TGN [3] uses direction in message function, but discards it for the graph aggregation

Messgge
Function Sy, (t_), Su(t_), t, e)
Direction-aware
Graph
Aggrree;;pation Z<t) — G(t)v E(t)v X(t)a S(t))

Direction-unaware

[3] Rossi et al., “Temporal Graph Networks For Deep Learning On Dynamic Graphs”, ICML 2020 GRL Workshop;



Conclusion

Dir-GNN achieves state-of-the-art results on five heterophilic benchmarks

e Edge directionality has largely been ignored in GNNs

e Preserving directionality can make heterophilic datasets more
homophilic

e We introduce Dir-GNN, a general framework for learning on
directed graphs

e Dir-GNN is more expressive than MPNNs on directed graphs

e Dir-GNN leads to large improvements on heterophilic datasets

e Many temporal datasets are directed!



Questions?

@emaros96
www.emanuelerossi.co.uk



