TGN: Temporal Graph
Networks for Dynamic
Graphs

Emanuele Rossi, Twitter

In collaboration with Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti
and Michael Bronstein

Background

Graph Neural Networks are a Hot Topic in
ML!

deep learning

.. gan

optimization

neural network

generative models

unsupervised learning
reinforcement learnin
convolutional neural networ

recurrent neural network

machine learning
multitask learnin
neural architecture searc

representation learning

adversarial robustness

~ robustness

selfsupervised learmrig

nip

transformer

bert

graph neural network

-4 -3 -2 -1 0 1 2
A between 2020 and 2019 in %

ICLR 2020 submissions keyword statistics

Plot: Pau Rodriguez Lopez

Graphs are everywhere

Social Networks

Molecules

Interaction Networks

From Images to Graphs

e Constant number of neighbors e Different number of neighbors
e Fixed ordering of neighbors e No ordering of neighbors

Graph Neural Networks

Gilmer et al. 2017

Problem: Many Graphs are Dynamic

&4 —— a

RAF/AW

follow

Social Networks

Interaction Networks

From Static to Dynamic Graphs

G = (V,E, X)

Static Graph
° No notion of
time

Less General

(V,E, X;)
[I | I
t=0 t, & ty
Spatio-Temporal Graph X.,
° Topology is fixed, but features change ', =

over time
° (Usually) observed at regular intervals
° Examples: traffic forecasting, covid-19

forecasting "
[

RN

Discrete-Time Dynamic Graph (DTDEv‘s)

{wiﬂ‘rf» 0<t1 <t2

Xt \

YA A

Continuous-Time Dynamic
Jraph (CTDGs)

Most general formulation

Each change (‘event’) in the graph
is observed individually with its
timestamp

Examples: Recommender Systems

Both topology and features change over time
However, graph is observed at regular
intervals (no information about what happens
in between)

Examples: Any system which is observed at

regular intervals More General

<>

CTDGs: Many Types of Events

Node Edge
Creation User joins platform User follows another user
Deletion User leaves platform User unfollows another user

Feature Change User updates their bio User changes retweet message

why is Learning on Dynamic
Graphs Different?

Model needs to:

- Support addition / deletion of node and edges, as well as feature
changes

- Make predictions (eg. classify a node) at any point in time

Using a static GNN would mean:

- Inefficiency: computation is repeated each time we want to make a
prediction

- Loss of information: Model would work on a snapshot of the graph,
but not able to take into account how the graph evolved

Problem Setup

Tasks

- Dynamic Node Classification
- Future Link Prediction

- Dynamic Graph Classification

(Encoder) Model Specification

- model.observe(event, t)

- Incrementally observe and incorporate information from a new event

- model predict(node_idx, t)

Produce an embedding for a node at a given timestamp, utilizing all the information
previously observed

- In contrast to static GNNs, this operation is called multiple times for each node as we need the
embedding at different point in time — It needs to be efficient and avoid repeating
computation

Evaluation

for event, t in events:

(u, v) = event

- Data is split chronologically ... e
- Eg.if dataspans Lyear — First 7
10 months train set, 11th Link prob = sigmoid (np.dot (u, v))
month validation and 12th $4# Also compute prob. of some negatively
month teSt Set ##4 sampled events, and compute eval metric

- Model predicts events R
sequentially

Model

TGN: Temporal Graph Networks

- Model for dynamic graphs is an encoder-decoder pair

- TGN is an encoder model which is able to generate temporal node embeddings z;(t) = f(i,t)
for any node i and time t. Decoder is task-dependent, eg. MLP from two node embeddings
to edge probability

- General theoretical framework, which consists of 5 different modules

- Generalizes existing models such as Jodie[1], TGAT[2] and DyRep|3]

22 (tg)
¢ D
% f——> TGN —> (if,fg;” p((2,4)[ts)
w7 N\ b z4(ts)

[1]Kumar et al. 2019, [2]Xu et al. 2019, [3]Trivedi et a. 2018

https://app.diagrams.net/?page-id=1537u-hYUmsisSEVlVmX&scale=auto#G1A5BRYas7jtvKrMbzdiMBzAPTgBexpykc

TGN Modules

Observe:

* Memory
* Message Function
 Memory Updater

Predict:
* Graph Embedding

Observe Modules: Memory

- State (vector) for each node the model has seen so far

- Compressed representation of all past interactions of a node
- Analogous to RNN hidden state, one for each node

- Not a parameter — updated also at test time

- Initialized at 0, it can handle new nodes (inductive)

(T -\

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Observe Modules:
Message Function

- Given an interaction (i,j), computes messages for the source and the destination
- Messages will be used to update the memory

m;(t) = msg(si(t7),s;(¢),t,e45(t)),
m;(t) = msg(s;(t),si(t),t, ei;(t))

Messages

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Observe Modules:
Memory Updater

- Updates memory using new messages

s;(t) = mem (m;(t),s;(t7))

(S / \
my (tl) S1 (tl)
ma(t1) s2(t1)

—mem—>»
ma (tz) ’ S4 (tg) ‘
L oma(ty) | | ss(ta)
N E—/ —
Messages (Updated)

Memory

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3

Predict Modules:
(Graph) Embedding

- Computes the temporal embedding of a node (which can be then
used for prediction) using the graph and the memory
- Solves the staleness problem (memory becoming out of date)

s1(to) z;(t) = emb(i,t) = h(si(t),s;(t),eij, vi(t),v;(t)),
s2(to) j vy v3 vg | v5
(to)

S9 s3 54 | s5

Temporal neighborhood -
[atw]) @ @ s
\ J \]
y e12(t2) e14(ta))
lemory e13(t3)|
z1(t1) 2o (t1) \ 1
24 (%2) z3(t2) _ U1

Node Embeddings

https://app.diagrams.net/?page-id=XQuVe9PhDXVf4bjWMJob&scale=auto#G1crESHDCRPysRUGvEJZ-8AhetTA8McCR3
https://app.diagrams.net/?page-id=okLoJMft42n3U-MHGWuY&scale=auto#G1W-sjrsrsJURJb0Ld7tWUwU9RGfKxofMx

TGN: Overview

Predict

Z21 (tl) Z9 (tl)

z4 (t2) Z3 (t2)

Node Embeddings

S1 (tl)
S92 (tl)

S4 (tg)

ms (tz S3 (t2)

NG / NG =

(Updated)
Memory

Observe

Messages

https://app.diagrams.net/?page-id=2Y3d6UWpIIbQFhJPVadd&scale=auto#G1tKDLLumBFkUCGden-Ah7AN4Mp1jcOJut

Learning TGN

- Problem 1: CTDGs can be seen as a
sequence for each node, but the
sequences are inter-dependent

- We cannot use standard BPTT

- Solution: Process interactions according
to a global chronological order

for event, t in events:

(u, v) = event

Predict probability of the next event
u embedding = model.predict (u, t)
v_embedding = model.predict (v, t)

link prob = sigmoid(np.dot (u, v))

Also compute prob. of some negatively

sampled events, and compute CE Loss

Observe that ground truth event

model.observe (event, t)

Learning TGN

- Problem 2: Memory-related modules do not directly influence the loss
and therefore do not receive a gradient

- The memory must be updated before predicting an interaction
- However, updating the memory with the same interaction we
then predict causes a leakage
- Trivial Solution:

- Update memory with messages from current batch, and predict
interactions of next batch

- However, nodes in the current batch may be different from nodes
in the next batch — Still no gradient

Learning TGN

- Solution:
- Always store most recent message for each node

- Update memory with stored messages for each of the nodes
involved in the batch (and their neighbors)

Learnlng TGN Dlagram

rmy (t1) @ T my (ty) @ s1(t1)
rms (t2) | g | ™2 () || N s2(t2)
| rms (t3) | | ms (tg) ‘ l S3 (tg) |
\| rmy(ty) |/ d my(ty) ’/ Q s4(ta) ‘/
Raw gt’frsesag e (Old) Messages (%@Cﬁé‘ig)
1 —ts>(2 emb 21 (ts) z2(t5) SD p((1,2)[ts) @/
() —t:>(3) 21 (t3) 2(ts) | (. 3)1t) >
Batch Node Embebbings Edge

Probabilities

https://app.diagrams.net/?page-id=lECZMzjrmla3wtnrequV&scale=auto#G1myyHlMEHDBtqLWizvZFlwT7z-gJX17cr

Scalability

Memory is not a parameter and we can just think of it
as an additional feature vector for each node which we
change over time

Only memory for nodes involved in a batch is in GPU
memory at any time

Model is as scalable as GraphSage — Can scale to very
large graphs (even if we don’t show this in the paper)

Experiments

Experiments: Future Edge Prediction

Wikipedia Reddit Twitter
Transductive Inductive Transductive Inductive Transductive Inductive
GAE* 91.44 4+ 0.1 f 93.23+0.3 f — f
VAGE* 91.344+0.3 f 92.92 + 0.2 t _ t
DeepWalk* 90.71 + 0.6 f 83.10+ 0.5 f — f
Node2Vec* 91.48 +0.3 f 84.58 + 0.5 f — f
GAT* 9473+ 0.2 91.274+04 9733+0.2 9537+0.3 67.57+0.4 62.32+0.5
GraphSAGE* 93.564+0.3 91.09+0.3 97.654+02 9627+0.2 65.79+0.6 60.13+0.6
CTDNE 92.17+0.5 f 91.41+0.3 f — f
Jodie 94.62+0.5 9311+04 97.114+0.3 94.36+1.1 8520+24 79.83+25
TGAT 9534+0.1 93.99+0.3 9812+0.2 96.62+0.3 70.02+0.6 66.35+0.8
DyRep 94594+ 0.2 92.05+0.3 9798+0.1 95.68+0.2 83.52+30 78.38+4.0
TGN-attn 98.46 +0.1 97.81+0.1 9870+0.1 9755+0.1 9452+05 91.37+1.1

Experiments: Dynamic Node Classification

Wikipedia Reddit
GAE* 74.85 £0.6 58.39+0.5
VAGE* 73.67£0.8 57.98+0.6
GAT* 82.34 +0.8 64.52+0.5
GraphSAGE* 82.42+0.7 61.244+0.6
CTDNE 75.89 £0.5 59.43+0.6
JODIE 84.84 +1.2 61.83+2.7
TGAT 83.609 £0.7 65.56 £0.7
DyRep 8459 + 2.2 6291 +24
TGN-attn 87.81 0.3 67.06+0.9

Ablation Stud

- Faster and more accurate than other approaches

- Memory (TGN-att vs TGN-no-mem) leads to a vast
improvement in performance

- Embedding module is also extremely important
(TGN-attn vs TGN-id) and graph attention performs
best

- Using the memory makes it enough to have 1 graph
attention layer

Test Average Precision

Mem. Mem. Updater Embedding Mess. Agg. Mess. Func.
Jodie node RNN time —t id
TGAT — — attn (21, 20n)* — —
DyRep node RNN id — attnll
TGN-attn node GRU attn (11, 10n) last id
TGN-21 node GRU attn (21, 10n) last id
TGN-no-mem — — attn (11, 10n) — —
TGN-time node GRU time last id
TGN-id node GRU id last id
TGN-sum node GRU sum (11, 10n) last id
TGN-mean node GRU attn (11, 10n) mean id
TGNattn 1oN-2 TGN-mean
98 A I
TGN-sum
97 A L
96 - I
TGN-id
95 - TGATL
TGN-nomem DyRep
94 -| Jodie , 5
0 20 40 60 80 100 120 140 160 700 725 750

Time (per epoch) in seconds

Future Work

- Benchmark datasets for dynamic graphs (see OGB)
- Time in ML: Improve how we use timestamp information in ML

- Method Extensions: Global (graph-wise) memory, continuous models
(eg. neural ODEs) to model the memory evolution

- Training Algorithm: Coming up with an even more efficient training
algorithm for dynamic graphs

- Scalability: Propose methods which scale better (possibly combining
with literature on graph sampling, but not trivial)

- Applications: Recommender Systems, biology (molecular pathways,
cancer evolution), finance (transaction networks) and more?

https://ogb.stanford.edu/docs/team/

Conclusion

- Dynamics graphs are very common, but have received
little attention so far

- We propose TGN, which generalizes existing models and
achieves SOTA results on a variety of benchmarks

- We design an efficient algorithm for training the
memory-related modules

- The ablation study shows the importance of the different
modules

Questions?

